- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Xu, Max Wenqiang (3)
-
Fox, Jacob (2)
-
He, Xiaoyu (1)
-
Luo, Sammy (1)
-
Soundararajan, Kannan (1)
-
Zhou, Yunkun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fox, Jacob; Xu, Max Wenqiang; Zhou, Yunkun (, Compositio Mathematica)Celebrated theorems of Roth and of Matoušek and Spencer together show that the discrepancy of arithmetic progressions in the first $$n$$ positive integers is $$\Theta (n^{1/4})$$ . We study the analogous problem in the $$\mathbb {Z}_n$$ setting. We asymptotically determine the logarithm of the discrepancy of arithmetic progressions in $$\mathbb {Z}_n$$ for all positive integer $$n$$ . We further determine up to a constant factor the discrepancy of arithmetic progressions in $$\mathbb {Z}_n$$ for many $$n$$ . For example, if $n=p^k$ is a prime power, then the discrepancy of arithmetic progressions in $$\mathbb {Z}_n$$ is $$\Theta (n^{1/3+r_k/(6k)})$$ , where $$r_k \in \{0,1,2\}$$ is the remainder when $$k$$ is divided by $$3$$ . This solves a problem of Hebbinghaus and Srivastav.more » « less
-
Fox, Jacob; He, Xiaoyu; Luo, Sammy; Xu, Max Wenqiang (, Journal of Graph Theory)Abstract The list Ramsey number , recently introduced by Alon, Bucić, Kalvari, Kuperwasser, and Szabó, is a list‐coloring variant of the classical Ramsey number. They showed that if is a fixed ‐uniform hypergraph that is not ‐partite and the number of colors goes to infinity, . We prove that if and only if is not ‐partite.more » « less
An official website of the United States government
